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ABSTRACT

In this paper we propose a way of uniform consideration of the coexistence
curves as for pure fluids and for binary mixtures in the same compositional coordinates.
The concept of the method starts from the idea that each molecular system tends to the
formation of local liquid structures. Going to the composition of the structures, a phase-
separation diagram takes "a compositional" symmetry. A modified thermodynamic
equations based on the regular mixing model gives surprisingly good agreement with
experimental data, taken from literature, even for the systems with complex topology
phase diagram. According to the approach the generalized scaling for the systems with
multi-critical points can be naturally derived. We carry out unified comparison of con-
centration and energy parameters in the frame of the regular mixing model and of the

scaling laws both for pure fluids and for binary mixtures of different origin.



INTRODUCTION

One of the interesting features of the coexistence curves (CCs) for the pure fluids
and binary liquid mixtures is the asymmetry of their shapes. The modern phase transi-
tion theory [1,2] attributes pure liquids, their mixtures, magnetics and 3D - Ising model
to the same class of universality. The deduction of a global equation of state for all rep-
resentatives of the same universality class is one of the topical area in current research
[3-7]. The problems of analytical representation of the CC are nowadays recognized to
be of identical to all phase-separating systems: (i) non-classical properties behavior near
the critical point (CP) and, as a sequence, there is no universally valid expression de-
scribed the shape of the CC in the wide range of the thermodynamic parameters; (ii)
some systems exhibit a variety of liquid-liquid equilibrium phase diagrams, including
the cases with several critical points [8]; (iii) compositional asymmetry of the CC shows
itself as a deviation of critical mole fraction from 0.5 and as anomalous properties of the
rectilinear diameter of the CC [9-14].

A comparison between shape of the pure fluid liquid-gas CC and binary mixtures
liquid-liquid CC is made difficult by the fact that (i) composition parameters are chosen
variously for different systems in accordance with experimental conveniences, applied
measuring technique features, and/or sample preparing method; (ii) the asymmetry of
CC is observed in real systems, whereas existed theories and models are initially sym-
metric relatively to CP.

In previous papers [15,16] we have propose a procedure of transition to the com-
position parameters, in which a CC has symmetric view.

Up to now there are no attempts to represent a liquid-gas CC in symmetric view
with advantage. In our opinion this is due to the fact that each pure substance has its
own density scale relatively to CP, whereas concentration scale of mixtures is restricted
by the interval from 0 to 1. Moreover, a CC for pure fluid used to be represented as a
"density-temperature" diagram or a "refractive index-temperature" diagram. The rela-

tionship between the refraction index and the density is the object of many experimental



and theoretical investigations [17,18]. The possibility of deducing concentration and
density from the data of refractive index measurements is the goal of such studies.

In this paper we analyze the shape of the liquid-gas CC of one-component sys-
tems and show that different composition coordinates lead to distinguished critical con-
centration parameters. Introduction of some normalized composition coordinates, to
have analogy with mole fractions in binary mixtures, makes it possible to symmetrize
the CC and to get identical energy parameters both for "p-T" and for "n-T" phase dia-
grams. We also demonstrate that parameters of the symmetrized liquid-gas and liquid-
liquid CC can be compared in the unified concentration and energy scales. The energy
parameters of a pure fluid liquid-gas CC and a binary mixture liquid-liquid CC are cal-
culated on the frame of both the new thermodynamic model of regular mixing and the

generalized scaling approach.

LIQUID-GAS COEXISTENCE CURVES: CHOICE OF COMPOSITION
PARAMETERS AND SYMMETRIZATION

According to the modern theories and models [19-23] of phase equilibrium, the
asymmetry of the CC cannot be taken into account by none of the way besides intro-
ducing density fluctuations, which would be interpreted [15,16] as an ability of system
to form energetically preferred and dynamically stable molecular units, assumed the
fundamental symmetry of mutual exchange between coexisting macroscopically differ-
ent components.

For completeness, we will only briefly review the basic points of our approach to
symmetrization of CC [15,16]. It is important that components of solution are asymmet-
ric relatively to the composition of molecular aggregates: one component (A) is "a sol-
vent" which forms matrix represented by multimer molecule [mA], and another compo-
nent (B), associating with molecules of A component, yields the stoichoimetric com-
pound [nA kB] dissolved in the matrix. Formation of the indicated structure units can be

represented by the quazichemical equation

xA+(1-x)B = x [mA]+(1—-x,)[n4kB]. (1)



Here x is the mole fraction (mol.fr.) of component A, x; is the normalized mol.fr. of
aggregates [mA]. The mole ratios of initial components X = x/(1-x) transform to the

mole ratios of symmetric coordinates by the following way
j— X - X o
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Parameter X, characterizes some relative composition of component A, limiting the
region at which isotropic solution of dispersed aggregates [nA kB] exists.
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where X, is the limiting concentration of forming freely dispersed aggregates, X, is the
critical concentration. Evidently, xs. = 0.5 and X, = 1 for symmetric system. The pa-

rameters S and X, are calculated independently by the least-mean-square fitting, using

the properties of symmetric CC [15,16].

xé +x£/ = 2x,. =1,
Yixg = xi=n “

where the prime and the double prime refer to the left and right branches of the CC, re-
spectively.

Therefore, these results indicate that the symmetrization have to be controlled by
two concentration parameters X, and X,. On the example of a pseudobinary microemul-
sion system Water/Aerosol OT/n-decane we have shown [24,25] that this parameters
correspond to the definite characteristic points on the phase diagram.

To apply the approach to the liquid-gas CC of one-component system it is neces-
sary to transit to normalized composition parameters analogous to mole fractions in bi-
nary mixtures. In our point of view the transition is possible if we assume the existence
of a limiting density, p,. Moving along the saturation line, the density of system cannot
exceed this value of p,. Normalizing the density of system on the limiting density , we
formally find "a concentration" parameter x = p/p,. If an experimental liquid-gas equi-
librium boundary is represented by the temperature dependence of the refractive index,

than we are able to associate measured refractive index n with the density p,
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using in the first approximation the Lorentz-Lorenz relationship

L—u—inap
n- + 2 3 |

where o is the electron polarizability. In the case we take L, = (n,>-1)/(n,*+2) as a value
proportional to the limiting density. Hereby, the consequent concentration parameter

equals to x = L/L,, where n, is the limiting refractive index of liquid, connected with p,.

At present there are no experimental data on direct measurement of parameter p,
which is individual for every substance and would be a characteristic of the liquid-gas
phase equilibrium. The approach described gives a possibility of independent calcula-
tion of the parameter p, from the experimental data on the liquid-gas CC. It will allow
us to associate p, with microscopic parameters of the substance and to understand its
physical meanings.

In fig.1a and b the CCs of CO, cannot be compared quantitatively because they
are represented in different “composition” parameters. Here the critical and limiting
composition characteristics of the system are schematically specified. The transition to
the "quasimole" fractions, x, is represented in fig.1c. The CCs obtained from the density
data and from the refractive indices data are shifted relatively to each other. The dis-
placement observed cannot be explained only due to experimental errors. It will be most
likely caused by a nonlinear variation of the polarizability o alone the saturation line.

But even if we use this coordinates, the liquid-gas CC appears to be asymmetric.
The deviation of the critical mole fractions x, from 0.5 indicates that in pure fluids den-
sity fluctuations lead to the asymmetry of composition exchange between coexisting
phases. These notions are in agreement with well known concept of associated liquids
[26], according to which the molecules of the same substance can simultaneously be
contained in two thermodynamically different states A and A'. A solvent matrix struc-
turally can be written down as a multimer molecule [mA] and dissolved within this ma-
trix molecular aggregates described by the formula [kA']. Molecules A and A' cannot
give rise to mixed structures [nA-kA'], that is why X, always equals to zero for a pure

liquid, and from (1)-(3) we have



X.= X/X,, 6)
where X, = m/k, X = pc/po, pe 1s the density of fluid in the liquid-gas CP.

We used the properties of symmetrized CC (4) to determine the composition
parameters p. and p, (or n. and n,) from experimental data on the liquid-gas equilibrium
diagrams, taken from literature (see Table 1). We applied these data to compare the
shape and parameters of the CCs obtained by different methods in various composition
coordinates g (order parameter).

In fig.1d and e the symmerized CCs of CO, are demonstrated. We notice that
there are no rectilinear diameter anomaly. Concentration parameters which symmetrize
the CC of binary mixtures of different origin, are represented in [16].

Thus only after symmetrization (independent determination of concentration
parameters) it becomes possible to compare the CC shape in uniform coordinates "xs-T"
and to carry out a theoretical analysis of the equilibrium boundaries (calculation of en-

ergy parameters).

THEORETICAL ANALYSIS OF SYMMETRIZED COEXISTENCE CURVES
General equations of extended theory of regular mixing

The concepts of symmetric regular solution theory [27] can be applied to the
symmetrized CC. In a wake of J.B.Thompson [28], we are here using the term regular
solution in a more general sense to denote any solution conforming to a simple equation
of state. According to the regular mixing theory the excess thermodynamic functions are
proportional to the x;x;, 1.e. to the probability of finding a couple of i-j type in some
fixed position. Equations of binodal and spinodal are obtained as a result of calculation

the first and second derivatives of free energy of mixing on concentration, respectively,
and setting them equal to zero:

-

. _ X
(binodal) X , = exp(XS_FIDRT), (6)
w
(spinodal) X ; = 2x? R; ; (7)

where Wi = Wy - T Wy is the general interaction energy parameter expressed in units of



free energy, R is the gas constant. Critical temperature is found from the extremum con-
ditions, coincided for both curves (6) and (7). We have shown [25,29] that for any num-
ber of critical points the parameter W can be expressed in universal form

Wg = 2RT + W (T - T). (8)

T* =A1(T, Ty) is the so called current critical temperature, which is the function of the

absolute temperature T and critical temperatures T.;. For example, in the case of one

. . : . i . . _ T, T, +T?
critical point: 7'~ = T, ; if the system has two critical points: 7~ = “T’T ; for
u i

3
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the case of three critical points: 7° =

It should be noted, that the difference (T*-T) is referred to the relative distance
of system with several critical points from the critical state, and is connected with the

general reduced temperature

T
T, = ———=71,7, U ,, (9)
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where W T and T, has been named [25] as the enthalpy-entropy com-
H ci

n
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pensation temperature and for systems with one critical point coincides with the critical
temperature T, t; = (T-T;)/T,; is the reduced temperature.

We have studied temperature dependence of Wg/R for the systems taken from
literature. It has been shown [25] that near critical point Ws/R increases up to the infin-
ity, and the reduced temperature dependence can be satisfactorily fitted by the power-

law function with o critical exponent
We/R =Bt 7. (10)
Optimum value of critical exponent ¢ was found by calculating the dependence

of multivariable function
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on ¢ for about 85 systems taken from literature. Here, N is the number of points, Z is the
number of fitting parameters. One can see in fig.2 that sharp minimum of the function
corresponds to the optimum value of ¢ = 0.298 which appears to be very close, but
somewhat less, to the main critical exponent 8 of the CC. Since there are strong depend-
ence of fitted critical amplitudes B on critical exponent & it is not be able to interpret
unequivocally the variations of the amplitudes B from system to system. That is why we
used the value o = 3 = 0.325 in calculation of critical amplitudes B. At this fixed value
critical amplitudes for various composition parameters become almost equal to each
other for the same liquid (see, Table 2). Calculated critical temperatures are in good
agreement with experimental values.

It is followed from here that the regular mixing pattern is ubiquitous and requires

reexamination of a large body of experimental data interpretations.

Scaling interpretation of multi-critical point coexistence curve

Considerable recent attention has been focused on binary and pseudobinary lig-
uid mixtures having two CPs [22,23,30,31].The choice of a field variable t, on the basis
of the isomorphism hypothesis has been justified by Malomuzh and Veytsman [31]. The
thermodynamic approach developed yields a simple and a clear sight on the complex
topology CC, generalizing the choice of a field variable not only for the double critical
point, but for the critical double point, as well as for the CC with any number of the
CPs.

To spread the ideas of the scaling theory on the systems with several CPs it is
necessary to define a simultaneous crossover from one CP to another, and vice versa.
Such a transition can be available by simple replacing the critical temperature T, on the

current critical temperature T*, and the reduced temperature on the generalized reduced
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temperature. In this case the symmetric CC with any number of the CPs is described by

the simple scaling
x,-05==+B1F, (12)

signs "+" and "-" refer to the left and the right branches of the CC. Herein 1, = (T*-T)/T,
is the general reduced temperature, which can be expressed using (12) in the following

form

_ O, -0s5d”

T, = _ETE . (13)

In particular of systems with two CPs an equation of binodal looks like the roots

of the quadratic equation

2
T = T”;T]i\/(T”:TI) - T,T,(1-1,). (14)

The crossover from one CP to another occurs at the temperature T; = \/ﬁ , at which
the square root expression equals to zero. Here signs "+" and "-" referto T > Tyand T <
Ty, respectively. Analyzing (14) one can conclude that at T, < 0 we have the closed-loop
CC, and at 1, > 0 we have two unclosed CCs (T, < Ty).

The optimum value of critical exponent $=0.314 has been obtained on the ex-
perimental data for 85 systems of different nature, including systems with two CPs.
However, as for the CC with one CP [16] it was found out that there exists a strong de-
pendence of fitted critical amplitude B on the critical exponent . As a result we would
be forced to calculate critical amplitudes at fixed value f= 0.325, which is equal to the
Ising model critical exponent. Surprisingly very good description of the entire solubility

curve for systems with two CPs is demonstrated in figs 3 and 4.
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Uniform description of the phase-separating boundaries for the pure fluids and
binary mixtures of different nature

Table 3 gives the results of the least-mean-square fitting of symmetrized CC for
the systems of different origin, including alkali-silicate binaries; polymer solution; two
mixtures that display the closed-loop CC; one system with two unclosed miscibility
gaps; mixtures of polar and nonpolar liquids in various combinations, crystalline solu-
tion; gaseous mixture under pressure, pure fluid (under normal conditions gas); liquid
alkali metal; and inert gas.

The absolute values of critical amplitudes B obtained on the frame of the regular
mixing model range between 0.15R to 21R for the systems studied, characterizing the
contribution to the entropy of mixing of changes in the internal degrees of freedom AS =
X1 X2 Ws. In the case of system with the upper CP critical amplitudes B = W¢/R are the
largest known for polymer solution and are the smallest known for oxide system. Large
negative values of B are characteristic of the closed-loop CC, and large positive values
are for systems with two unclosed CCs, when T,<T). The most of the typical binary
mixtures exhibit critical amplitude B ranged from about 1 to 3.

On the other hand, the absolute value of B ranges between 0.59 and 2.12 in the
case of the CC scaling representation.

All studied CCs for the systems of different origin can be depicted by universal
scale (fig.5). Comparing the CC of c-CgHi»/polystyrene, which has a large value of B,
with the CC of systems with several CPs, one can conclude that the width of an immis-
cibility gap depends not only on the value of critical amplitude. It is easily noticeable
that critical amplitudes for the systems with two CPs (Table 3) differ not very consid-
erably, whereas primary CCs exhibit strong distinctions in the width of the immiscibility
gaps. The distinctions may be associated with the asymmetry of the CC caused by for-
mation of different in size and composition local liquid structures.

In magnified scale (fig.6) the symmetrized CCs for the systems with two CPs
show that (a) the closed-loop CC in normalized view are equivalent to the lower CP,

and two unclosed CCs correspond to the Upper CP; (b) in the latter case both parts of
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the CC with upper CP (3') and lower CP (3") are distinguished, even if they are de-

scribed by the (6) with the same parameters.

CONCLUSION

We have shown that the liquid-gas CCs of pure fluids can be represented in con-
centration-binary-mixture-like coordinates assuming the existence of a limiting density
of a system. The procedure for symmetrizing the binary mixture CC which have been
suggested by us [15,16] is applied to the pure fluids. The concept, which must be intro-
duced to accomplish this, is the assumption that the molecules of a liquid can be simul-
taneously contained in two different states. This transformation symmetrizes the CCs.

The thermodynamic equations of regular mixing adopted to the critical behavior
appear to represent the data of symmetrized CCs well as for pure fluids as for binary
liquid mixtures of different nature including the multi-critical phase diagrams. The gen-
eralized scaling for the latter systems are naturally derived from the approach.

Generalizing the obtained results we note that the procedure of the CC sym-
metrizing allows us to separate the calculations of concentration and energy parameters
both of the modified regular mixing equations and of the generalized scaling lows, thus
providing the most convenient way of quantitative description of the phase-separation
boundary by means of four independent parameters (X, Xo, T¢, B) and one universal
critical exponent & (or 3). Following this approach, a number of systems of different
origin were successfully treated.

The results obtained will provide a basis for manifestation of an intrinsic mutual
connection between macroscopic parameters of the CC and physico-chemical nature

(microscopic characteristics) of the system.



List of symbols
X

Xe

Xs

Xsc

Xo

X =x/(1-x)

Xs = X¢/(1-Xs)
Xse = Xse/(1-Xsc)
Xo=Xo/(1-Xo)

n

N,

WG = WH -T Ws

To
(&)

mole fraction (mol.fr.) of component A
critical mol.fr. of component A
normalized mol.fr. of aggregates [mA]
critical mol.fr. of aggregates [mA]

limiting concentration of forming freely dispersed aggregates

mole ratio of initial components

mole ratio of aggregates [mA] and [nA kB]
critical mole ratio of aggregates [mA] and [nA kB]
limiting mole ratio

refractive index

limiting refractive index

general interaction energy parameter

gas constant

current critical temperature

critical temperature for system with several critical points
upper critical temperature

lower critical temperature

enthalpy-entropy compensation temperature
critical amplitude

electron polarizability

critical exponent of the CC

density

limiting density

density of fluid in the liquid-gas critical point
reduced temperature.

general reduced temperature.

critical exponent of W¢/R
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Table 1. Symmetrization parameters of liquid-gas coexistence curves

15

System g g.(exp) gi(cale) g X¢ Xe=m
COy* p, kg/m’ 468.2 464.6 1082.4  0.4272 0.7519
CO,’ n 1.1060 1.1076  1.2458 0.4522 0.8256
NO,* p, kg/m’ 452. 449, 1023.3  0.4388 0.7817
NO, n 1.1154 1.11535 1.2628 0.4547 0.8340
Ar n 1.08587 1.0844 1.2067 0.4194 0.7234
Rb° p, kg/m’ 292. 288. 968. 0.2972 0.4228
Cs* p, kg/m’ 379. 360. 1300. 0.2769 0.3829
Cs' p, kg/m’ 390. 369.2 1302.3  0.2835 0.3956
Hg® p, kg/m’ 5800. 5800. 11900. 0.4873 0.9505
Hg" p, kg/m’ 5900. 5800. 11600. 0.5000 1.0000

* A Michels, B.Blassie, C.Michels, Proc.Roy.Soc. (London), A902 (1937) 358.

" JM.H.Levelt Sengers, J.Straub, M. Vicentini-Missoni, J.Chem.Phys., 54 (1974) 5034.

¢ D.Cook, Trans.Faraday Soc., 19 (1953) 716.
4R K.Teaque, J.Pings, J.Chem.Phys., 48 (1968) 4973.

°S.Jungst, B.Knuth, F . Hensel, Phys.Rev.Lett., 55 (1985) 2160.

"N.B.Vargafftic, E.B.Gelman, V.F Kozhevnikov, and S.P.Naurzakov, Int.J. Thermophys., 11 (1990) 467.

? W.Goetzlaff, Ph.D. dissertation, Marburg, 1988.

"V.F. Kozhevnikov, S.PO.Naurzakov, and A P.Senchenkov, J.Moscow Phys.Soc., 1 (1990) 171.



Table 2. Energy parameters of the symmetrized CC of one-component systems
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System® Data T(exp) Regular mixing model Simple scaling model
Te(calc) B c Te(calc) B B
CO; p 304.12 30441 235 0.195 304.13  0.847 0.342
304.11  1.67 0.325 304.13  0.802 0.325
CO; n 304.17 304.14 1.79 0.309 304.13  0.894 0.347
304.14  1.67 0.325 304.13  0.808 0.325
NO; p 309.49 309.50 1.80 0.377 309.49 0.863 0.347
30949 1.54 0.325 309.49 0.799 0.325
NO; n 309.566 309.57 1.76 0.299 309.56 0.866 0.344
309.57 1.61 0.325 309.56  0.808 0.325
Ar n 150.704 15136 2.06 0.026 150.704 0.748 0.332
150.50 1.24 0.325 150.704 0.736  0.325
Rb p 2017 2017.18 1.34 0.274 2017.16 0.707 0.323
2017.02 1.20 0.325 2017.16 0.710  0.325
Cs p 1924 1925.0 0.746 0.401 1923.88 0.714 0.322
1925.6  0.897 0.325 1923.88 0.718 0.325
Cs p 1938 1937.78 1.13 0.325 1936.9 0.669 0.302
1938.0 0.693 0.325
Hg p 1751 1752.15 0.559 0.326 1751.15 0.749 0.366
1752.15 0.560 0.325 1751.15 0.664 0.325
Hg p 1783 1783 0.302 0.501 1783.00 0.668 0.344
1783 0.416 0.325 1783.00 0.642 0.325

®For references see Table 1
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Table 3. Energy parameters of symmetrized CCs of different nature at fixed values of

critical exponents (G = 3 = 0.325).

System, A/B Experiment Regular mixing model Simple scaling model
T, T T, T B T, T B

SiOy/Li,O* ~1275 - 1273.55 - 0.654 1272.53 - 0.664
Si0,/Na,0* 1110.15 - 111.15 - 0.146 1111.11 - 0.594
c-CeH, 2/Polys'[yreneb

(M=200000) 296.99 - 296.985 - 19.5 296.99 - 2.120
1-propoxy-

propane-2o0l/ H,O°  444.85307.65 444.94 307.74 -9.7 444 88 307.55 1.080
Glycerol/Guaiacol’  356.65312.65 356.66 312.68 -21.1 356.55 312.95 1.690
CeHg/S® 431.15498.15 431.45 49636 16.8  431.16 496.28 1.360
CsHi»/C¢HsNO,' 304.65 - 304.60 - 1.92 304.65 - 0.841
CsH;»/CsF 2 265.50 - 26543 - 2.50 26550 - 0.905
C7H16/CH30Hh 324.008 - 324.009 - 3.03 324.009 - 1.000
H,0/C¢HgO' 341.55 - 341.55 - 1.07 341.55 - 0.745
NaCIl/KCTI ~765.2 - 749.40 - 1.98 757.80 - 0.764
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Figure captions

Figure 1. Coexistence curve of COs: (a) primary data in "temperature-density" coordi-
nates; (b) primary data in "temperature-refractive index" coordinates; (c) primary data in
"temperature - quazimole fractions" coordinates (solid line and full points are the den-
sity data, dotted line and open points are the refractive index data, lines are calculated
using the new regular mixing model with parameters from Table 1), (¢) symmetrized
coexistence curve (the density data); (d) symmetrized coexistence curve (the refractive
index data). Lines are calculated using the new regular mixing model with parameters
from Table 2.

Figure 2. Optimization of the critical exponent G.

Figure 3. Primary (1) and symmetrized (2) CCs for the system glycerol/quaiacol. Points
are the experimental data, represented via mol.fr. of the A component (1) and the aggre-
gates mA (2). Lines are calculated using (6) with parameters from Table 3.

Figure 4. Primary (1) and symmetrized (2) CCs for the system benzene/sulphur. For
notations see fig.3.

Figure 5. Reduced shape of the symmetrized systems of different origin (the regular
mixing model): (1) Si0,/Na,O; (2) Rb; (3) CO; (4) C7H16/CH30H; (5) CsHe/S; (6) c-
CsHia/polystyrene; (7) 1-propoxypropane-20l/H,0.

Figure 6. Relationship between immiscibility gaps of the systems with two CPs in nor-
malized coordinates: (1) 1-propoxypropane-20l/H,O; (2) glycerol/guaiacol; (3) C¢He/S. '

and " refer to upper and lower CP, respectively.
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